many segments (sides and diagonals) may be drawn between vertices of an octagon? The

answer again is 28, as can be verified in the picture below.

[e] o]

(o] (o)

As often happens in mathematics, connections to geometry provide a new way of
approaching the problem: Each vertex is an endpoint for exactly 7 segments, and there
are 8 vertices, which sounds like there ought to be 7 x 8 = 56 segments. But that
multiplication counts each segment twice (once for each endpoint), so there are really
half as many, or 28, segments.

In still another mathematical domain, combinatorics — the study of counting,
grouping, and arranging a finite number of elements in a collection — the problem
becomes how to count the number of ways to choose two items (people shaking hands)
from a collection of eight elements. For example, in how many ways can a committee of
two be chosen from a group of eight people? This is the same as the handshake problem
because each committee of two corresponds to a handshake. It is also the same as the
octagon problem because each committee corresponds to a segment (which is identified
by its two endpoints).

A critically important mathematical idea in the above discussion lies in noticing
that these are all the same problem in different clothing. It also involves solving the
problem and finding a representation that captures its key features. For students to
develop the mathematical skill and ability they need to understand that seemingly
different problems are just variations on the same theme, to solve the problem once and
for all, and to develop and use representations that will allow them to move easily from

one variation to another, the study of number provides an indispensable launching pad.
Summary

In this chapter, we have surveyed the domain of number with an eye toward the

proficiency that students in grades pre-K to 8 need for their future study of mathematics.
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Several key ideas have been emphasized. First, numbers and operations are
abstractions—ideas based on experience but independent of any particular experience.
The numbers and operations of school mathematics are organized as number systems,
and each system provides ways to consider numbers and operations simultaneously,
allowing learners to focus on the regularities and the structure of the system. Despite
different notations and their separate treatment in school, these number systems are
related through a process of embedding one system in the next one studied. All the
number systems of pre-K to grade 8 mathematics lie inside a single system represented
by the number line. Second, all mathematical ideas require representations, and their
usefulness is enhanced through multiple representations. Because each representation
has its advantages and disadvantages, one must be able to choose and translate among
representations. The number line and the decimal place-value system are important
representational tools in school mathematics, but students should have experience with
other useful interpretations and representations, which also are important parts of the
content. Third, calculation requires algorithms, and once again there are choices to make
because each algorithm has advantages and disadvantages. And finally, the domain of
number both supports and is supported by other branches of mathematics. It is these
connections that give mathematics much of its power. If students are to become
proficient in mathematics by eighth grade, they need to be proficient with the numbers
and operations discussed in this chapter, as well as with beginning algebra, measure,

space, data, and chance—all of which are intricately related to number.
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NOTES

! Some authors (see, e.g., Russell, 1919, p. 3; Freudenthal, 1983, pp. 77ff) call these the natural numbers.
We are adopting the common usage of the U.S. mathematics education literature, in which the natural
numbers begin 1, 2, 3, and so on, and the whole numbers include zero.

2 The recognition that zero should be considered a legitimate number—rather than the absence of
number—was an important intellectual achievement in the history of mathematics. Zero (as an idea) is
present in the earliest schooling, but zero (as a number) is a significant obstacle for some students and
teachers. “Zero is nothing,” some people say. “How can we ask whether it is even or odd?”

3 “To criticise mathematics for its abstraction is to miss the point entirely. Abstraction is what makes
mathematics work. If you concentrate too closely on too limited an application of a mathematical idea,
you rob mathematicians of their most important tools: analogy, generality and simplicity” (Stewart,
1989, p. 772).

* Although negative numbers are quite familiar today, and part of the standard elementary curriculum, they
are quite a recent development in historical terms, having become common only since the Renaissance.
Descartes, who invented analytic geometry, and after whom the standard Cartesian coordinate system
on the plane is named, rejected negative numbers as impossible. (His coordinate axes had only a
positive direction.) His reason was that he thought of numbers as quantities and held that there could
be no quantity less than nothing. Now, however, people are not limited to thinking of numbers solely
in terms of quantity. In dealing with negative numbers, they have learned that if they think of numbers
as representing movement along a line, then positive numbers can correspond to movement to the
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right, and negative numbers can represent movement to the left. This interpretation of numbers as
oriented length is subtly different from the old interpretation in terms of quantity, which would here be
unoriented length, and gives a sensible and quite concrete way to think about these numbers that
Descartes thought impossible.

5 Freudenthal, 1984, suggests that “negative numbers did not really become important until they appeared
to be indispensable for the permanence of expressions, equations, formulae in the ‘analytic geometry’”
(p- 436). “Later on arguments of content character were contrived ... although some of them are not
quite convincing (positive-negative as capital-debt, gain-loss, and so on)” (p. 435).

¢ See Freudenthal, 1984, p. 435.

7 Although rational numbers seem to present more difficulties for students than negative integers,
historically they came well before. The Greeks were comfortable with positive rational numbers over
2000 years before negative numbers became accepted. See also Behr, Harel, Post, and Lesh, 1992.

® The rules are in a sense guided by the fractional notation, a/b. In other notational systems, such as
decimal representation, the rules will look somewhat different, although they will be equivalent.

® These numbers (and many others) are not rational because they cannot be expressed as fractions with
integers in the numerator and denominator.

1 In the number-line illustrations throughout this chapter, the portion displayed and the scale vary to suit
the intent of the illustration. That is reasonable not just because one can imagine moving a “lens” left
and right and zooming in and out, but also because the ideas are independent of the choice of origin

and unit.

! The finite decimals, also called decimal fractions, were first discussed by Stevin, 1585/1959.

12 Bruner, 1966 (pp. 10-11), suggests three ways of transforming experience into models of the world:
enactive, iconic, and symbolic representations. Enactively, addition might be the action of combining
a plate of three cookies with a plate of five cookies; iconically, it might be represented by a picture of
two plates of cookies; symbolically, it might be represented as 5 cookies plus 3 cookies, or merely 5 +
3.

1 Pimm, 1995 suggests that people seek representational systems in which they can operate on the symbols
as though the symbols were the mathematical objects.

 Duvall, 1999.

' Kaput, 1987, argues that much of elementary school mathematics is not about numbers but about a
particular representational system for numbers.

16 See Lakoff and Nufiez, 1997, and Sfard, 1997, for detailed discussion of the metaphoric nature of
mathematics.

17 Sfard, 1997, p. 36, emphasis in original.

18 «] remember as a child, in fifth grade, coming to the amazing (to me) realization that the answer to 134
divided by 29 is 134/29 (and so forth). What a tremendous labor-saving device! To me, ‘134 divided
by 29’ meant a certain tedious chore, while 134/29 was an object with no implicit work. I went
excitedly to my father to explain my discovery. He told me that of course this is so, a/b and a divided
by b are just synonyms. To him it was just a small variation in notation” (Thurston, 1990, p. 847).

1 Grouping is a common approach in measurement activities. For example, in measuring time, there are 60
seconds in a minute, 60 minutes in an hour, 24 hours in a day, approximately 30 days in a month, 12
months in a year, and so on. For distance, the customary U.S. system uses inches, feet, yards, and
miles, and the metric system uses centimeters, meters, and kilometers.

% For example, IX means nine (that is, one less than ten), whereas XI means eleven (one more than ten).

2! This generality was a significant accomplishment. In the third century BC in Greece, with its primitive
numeration system, a subject of debate was whether there even existed a number large enough to
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describe the number of grains of sand in the universe. The issue was serious enough that Archimedes,
the greatest mathematician of classical times, wrote a paper in the form of a letter to the king of his city
explaining how to write such very large numbers. Archimedes, however, did not go so far as to invent
the decimal system, with its potential for extending indefinitely.

22 Try a few different calculators. Scientific calculators typically perform the multiplication first, but
simpler *“four-function” calculators usually perform the addition first.

% In the process of converting a fraction to a decimal, all remainders must be less than the denominator of
the fraction. Because the list of possible remainders is finite, and because each subsequent step is
always the same (brings down a 0, etc.), the remainders must eventually repeat. The fraction 2/7 had 6
remainders (the maximum) and repeated in 6 digits. Other examples: 1/11 repeats in 2 digits, 1/13
repeats in six digits, and 1/17 repeats in 16 digits.

* Knuth, 1974, p. 323.
% Steen, 1990. See Morrow and Kenney, 1998, for more perspectives on algorithms.

28 The method is also called gelosia multiplication and is related to the method of Napier’s rods or bones,
named after the Scottish mathematician John Napier (1550-1617).

%7 The ellipses “...” in the expression is a significant piece of abstract mathematical notation, compactly
designating the omission of the terms needed (to reach m, in this case).
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