some positive rational numbers that cannot be subtracted from a given positive rational
number (and still remain within the system). Thus, if you want to be able always to do
both operations (except dividing by zero), you have to extend these systems further: You
have to annex reciprocals to the integers, and you have to annex negatives to the positive
rationals.

That process involves a lot more work. The end result, however, is as elegant as
one could wish. It turns out that either procedure produces a system in which all
operations are possible, with additive inverses for all numbers and multiplicative inverses
for all numbers except zero. In this system, subtraction of a number becomes addition of
its additive inverse, and division by a number becomes multiplication by its
multiplicative inverse. The rules in Boxes 3-1 to 3-4 all hold. In both systems, all
arithmetic is determined by these rules.

Finally, the two procedures actually produce the same system. The end result is
essentially the same, whether one first annexes the negatives and then the fractions, or the
other way around. The hard part is making sure that you can actually do it—that there
really is a system in which you can add, subtract, multiply, and divide, and where all the
rules work in harmony to tell you how to do it. Mathematicians call this system the

rational numbers.

Arithmetic Into Geometry—The Number Line

The rational numbers are harder to visualize than the whole numbers or even the
integers, but there is a picture that lets you think about rational numbers geometrically. It
lets you interpret whole numbers, negative numbers, fractions and decimals all as part of

one overall system. Furthermore, it provides a uniform way to extend the rational

number system to include numbers such as n and 2 that are not rational;’ it provides a
link between arithmetic and geometry; and it paves the way for analytic geometry, which
connects algebra and geometry. This conceptual tool is called the number line. It can be
seen in a rudimentary way in many classrooms, but its full potential for organizing
thinking about number and making connections with geometry seems not to have been
fully exploited. Finding out how to realize this potential might be a profitable line of

research in mathematics education.
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The number line is simply a line, but its points are labeled by numbers. One point
on the line is chosen as the origin. It is labeled 0. Then a positive direction (usually to
the right) is chosen for the line. This choice amounts to specifying which side of the
origin will be the positive half of the line; the other side is then the negative half. Finally,
a unit of length is chosen. Any point on the line is labeled by its (directed) distance from
the origin measured according to this unit length. The point is labeled positive if it is on
the positive half of the line and as negative if it is on the negative half. The integers,
then, are the points that are a whole number of units to the left or the right of the origin.
Part of the number line is illustrated below, with some points labeled.'®

-+ttt
5 4 3 2 -1 0 1 2 3 4 5 6 7

Rational numbers fit into this scheme by dividing up the intervals between the

integers. For example, 1 goes midway between 0 and 1, and 2 goes midway between 1
and 2. The numbers 1 and % divide the interval from 0 to 1 into three parts of equal
length, and the numbers £ = 21 and ¢ = 22 divide the interval between 2 and 3

similarly. If you locate fractions with different denominators on the line, they may

appear to be arranged somewhat irregularly.

1 2 3
4 4 N
-] - >
I 12 1 32 4
0 s 315 7 53 3 1

However, if you fix a denominator, and label all points by numbers with that fixed
denominator, then you get an evenly spaced set, with each unit interval divided up into
the same number of subintervals. Thus all rational numbers, whatever their
denominators, have well-defined places on the number line. In particular, decimals with
one digit to the right of the decimal point partition each unit interval on the number line

into subintervals of length L, and decimals with two digits to the right of the decimal
point refine this to intervals of length L, with 10 of these fitting into each interval of

length . See Box 3-6.
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Box 3-6
The Number System of Finite Decimals"

Although they are not usually singled out explicitly, the finite decimals, such as 3, -104, 21.6,
0.333,0.0125, and 3.14159, form a number system in the sense that you can add them and
multiply them and get finite decimals. You can also subtract finite decimals, but you cannot

always divide them. For example, § cannot be exactly represented as a finite decimal, although

it can be approximated by 0.333. The finite decimal system is intermediate between the integers
and the rational numbers.

The advantage of working with finite decimals rather than all the rational numbers is that the
usual arithmetic for integers extends almost without change. The only complication is that one
must keep track of the decimal point. (This seemingly small complication is actually a large
conceptual leap.) For example,

104
x.333
3.14159 312
+ .0125 312
3.154409 312
34632

The finite decimal system does allow division by 10 (and by its divisors, 2 and 5), and it may be
characterized as the smallest number system containing the integers and allowing division by 10.
Indeed another way of representing finite decimals is as rational numbers with denominators that
are powers of 10. For example, 21.6 =216/10 and 0.0125 = 125/10,000.

It may not seem a huge gain to be able to divide by 10. What is the point of enlarging the system
of integers to the system of finite decimals? It is that arithmetic can remain procedurally similar
to arithmetic of whole numbers, and yet finite decimals can be arbitrarily small, and, as a
consequence, can approximate any number as closely as you wish. This process is best illustrated
by using the number line.

The integers occupy a discrete set of points on the number line, each separated from its neighbors
on either side by 1 unit distance:

i I [l
1 T J

-1 0 1 2
The finite decimals with at most one digit to the right of the decimal point label the positions
between the integers at the 1+ division points:

} L ot I 4 } $ } L Fl I 4
T ¥ T ¥ T T ¥ ¥ ¥ T T T
.9 1 11 12 13 14 15 16 17 18 19 9

NI N S S T T
If you allow two digits to the right of the decimal point, these tenths are further subdivided into
hundredths.

-1 ) 0 33 1 141 2
As you can see, space between these numbers is already rather small. It would be very difficult to
draw a picture of the next division, defined by decimals with three digits to the right of the
decimal point. Nonetheless, you can imagine this subdivision process continuing on and on,
giving finer and finer partitions of the line.
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Geometrically, the digits in a decimal representation can be viewed as being parts of an “address”
of the number, with each successive digit locating it more and more accurately. Thus if you have
the decimal 1.41421356237, the integer part tells you that the number is between 1 and 2. The
first decimal place tells you that the number is between 1.4 and 1.5. The next place says that the
number is between 1.41 and 1.42. The first decimal place specifies the number to within an

1

interval of % . The second decimal place specifies the number to within an interval of length 700 >
and so on.

If you think of it in this way, you can imagine applying this “address system” to any number, not
just finite decimals. For finite decimals, the procedure would effectively stop, with all digits
beyond a given point being zero. With a number that is not a finite decimal, the process would go
on forever, with each successive digit giving the number 10 times more precision. Thus, the
finite decimals give you a systematic method for approximating any number to any desired
accuracy. In particular, although the reciprocal of an integer will not usually be a finite decimal,

you can approximate it by a finite decimal. Thus, 1 is first located between 0 and 1, then
between 0.3 and 0.4, then between 0.33 and 0.34, and so on.

But once you have started allowing approximation, there is no need or reason to restrict yourself
to rational numbers. All numbers on the number line—even those that are not rational—can be

approximated by finite decimals. For example, the number \/-2_ is approximately 1.41421.
Expanding the rational number system to include all numbers on the number line brings you to
the real number system. Finite decimals give you access to arbitrarily accurate approximate
arithmetic for all real numbers. That is one reason for their ubiquitous use in calculators.

The potential of the number line does not stop at providing a simple overall way
to picture all rational numbers geometrically. It also lets you form geometric models for
the operations of arithmetic. These models are at the same time more visual and more
sophisticated than most interpretations. Consider addition. We have already mentioned
that one way to interpret addition of whole numbers is in terms of joining line segments.
Now you can refine that interpretation by taking a standard segment of a given (positive)
length to be the segment of that length with left end point at the origin. Then the right
endpoint will lie at the point labeled by the length of the segment. To encompass
negative numbers, you must give your segments more structure. You must provide them
with an orientation—a beginning and an end, a head and a tail. These oriented segments
may be represented as arrows. The positive numbers are then represented by arrows that
begin at the origin and end at the positive number that gives their length. Negative
numbers are represented by arrows that begin at the origin, and end at the negative
number. That way, 4 and -4, for example, have the same length but opposite orientation.

(Note: For clarity, arrows are shown above rather than on the number line.)
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Suppose I want to compute 4 + 3 on the number line. It is difficult to add the

arrows when they both begin at the origin:

=

1 1 i l

1 1 L] 1 LI

; 1
-1 01 2 3 4 5 6

- -

Y

8

o |
-«
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O 4

But the arrows may be moved left or right, as needed, as long as they maintain the
same length and orientation. To add the arrows, I move the second arrow so that it

begins at the end of the first arrow.

7 > The result of the addition is an arrow that
B W LA W ds from the beginning of the first
- —— 1y extends from the beginning of the firs
1 0 1 2 4 5 6 7 8 9 arrow to the end of the second arrow.

This geometric approach is quite general: It works for negative integers and
rational numbers, although in the latter case it is hard to interpret the answer in simple

form without dividing the intervals according to a common denominator.

1+1
3+-5='2 oo y . 2 3 1 1
< 5 1 >t —>
- 3> - | |2 1 | 3- L |
-ttt Tttt
1 2 3 4 5
5 4 3 2 -1 01 2 3 4 5 0 % % % 6 3 1

Another method (see below) for illustrating addition on the number line is simpler
because it uses only one arrow. The method is more subtle, however, because it requires
that some numbers be interpreted as points and others as arrows.

4+3=7

Interpret the first number as a
point and the second number as
an arrow. Position the beginning
of the arrow at the point. The
3+-5=-2 result of the addition is given by
the point at the end of the arrow.

N
v

5 4 3 2 -1 01 2 3 45
Numbers on the number line have a dual nature: They are simultaneously points
and oriented segments (which we represent as arrows). A deep understanding of number
and operations on the number line requires flexibility in using each interpretation. A

principal advantage to this shorthand method for addition is that it supports the idea that
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