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Gloves and derangements

In the spring semester of 2005, the first author presented the following problem (and
solution) as an example for her graph theory and combinatorics class, as found in Alan
Tucker’s Applied Combinatorics [5]:

GLOVE PROBLEM. Given five pairs of gloves, how many ways are there for five
people each to choose two gloves with no one getting a matching pair?

In this problem, we assume that we can distinguish between left and right gloves. If
we require that each person choose one left glove and one right glove, then the answer
is 5,280; if we allow for the possibility of a person choosing two gloves for the same
hand, then it shoots up to 65,280. Obtaining these answers is a nice illustration of
combinatorial techniques.

Mismatched gloves may remind us of derangements. A derangement of n objects is
a permutation in which every object gets moved. To count the number of derangements
of n distinct objects, we turn to the principle of inclusion-exclusion, used for counting
the number of elements in some universal set U , which satisfy none of n different
properties. We let Ai denote the elements of U satisfying property i , and Sk the sum of
the cardinalities of all k-fold intersections of the Ai ; that is,

Sk =
X

i1<···<ik

|Ai1 \ · · · \ Aik |.

For example,

S1 = |A1| + |A2| + · · · + |An|

and

S2 = |A1 \ A2| + |A1 \ A3| + · · · + |An�1 \ An|

(including all
�n

2

�
pairs). Then the principle states that

��A1 \ A2 \ · · · \ An

�� = |U | � S1 + S2 � S3 + · · · + (�1)n Sn. (1)

The left side of (1) is the number of elements of U that are not contained in any of the
sets Ai .
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To count derangements, we let Un denote the set of all permutations of {1, . . . , n},
and Ai denote the subset of these permutations in which object i is in its original
position. Then |Un| = n! and |Ai | = (n � 1)! for all 1  i  n. More generally,
|Ai1 \ · · · \ Aik | = (n � k)! for all subsets {i1, . . . , ik} ✓ {1, . . . , n}, and since there
are

�n
k

�
= n!/[k! (n � k)!] such subsets, we get Sk =

�n
k

�
(n � k)! = n!/k!. Hence the

nth derangement number is

Dn = n!


1
0! � 1

1! + 1
2! � · · · + (�1)n

n!

�
.

The first few values are D1 = 0, D2 = 1, D3 = 2, D4 = 9, D5 = 44. An immediate
consequence is that the fraction of all permutations that are derangements quickly
converges to 1/e as n ! 1.

Derangements can be used to solve the version of the Glove Problem in which n
people each choose one left glove and one right glove. We begin by labeling the gloves
1L , 1R, . . . , nL , nR . To create n mismatched pairs of gloves, we first line up all of the
left-hand gloves in their natural order: 1L , 2L , . . . , nL . We then pair them up with a
derangement of the right-hand gloves, and there are Dn ways to do this. Finally, there
are n! ways for us to distribute all n pairs of gloves, since no two glove-pairs will be
the same, giving us the solution

n!Dn = [n!]2


1
0! � 1

1! + 1
2! � · · · + (�1)n

n!

�
.

When n = 5, this formula gives (5!)D5 = 5,280, one answer to the original Glove
Problem.

If we allow people to choose gloves regardless of handedness, then the answer is
more subtle, but we can again invoke the principle of inclusion-exclusion. Let Un be
the set of all possible ways of distributing 2 gloves to each of n people, from a set
of 2n distinct gloves. To compute |Un|, we line up the gloves in order 1L , 1R, . . . , nL ,
nR . We then assign to this glove lineup a permutation of the multiset consisting of two
copies of each person’s name, which gives

|Un| = (2n)!/2n.

If we let Ai denote the subset of glove distributions in which somebody gets matching
pair i , then to compute Sk , we first choose which k gloves are matched, distribute
these matching pairs to k lucky people, then distribute the remaining n � k pairs in
any fashion. If we use

�n
k

�
to denote the number of k-combinations of n objects and

P(n, k) = n!/(n � k)! to denote the number of k-permutations of n objects, then we
get as our answer

nX

k=0

(�1)k

✓
n
k

◆
P(n, k)

[2(n � k)]!
2n�k

=
nX

k=0

(�1)k

✓
n
k

◆
P(n, k)|Un�k |.

When n = 5, this gives a value of 65,280, which is the other answer to the original
Glove Problem.

Socks and derangements

Suppose that we remove the crucial assumption that right- and left-hand gloves are
distinguishable. As suggested by one of our students, this happens naturally if we
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phrase the problem in terms of socks, rather than gloves. The resulting problem is
surprisingly more difficult.

DERANGED SOCK PROBLEM. Given n distinct pairs of socks, how many ways are
there for n people each to choose two socks with no one getting a matching pair? For
the remainder of this paper, the solution to this problem shall be denoted dn .

Note that there is only one version of this problem: If left and right socks are in-
distinguishable, then it doesn’t make sense to consider the version where each person
ends up with one left sock and one right sock. If we attack this problem with the prin-
ciple of inclusion-exclusion, then by analogy to the glove problem, we can start with
what might seem to be an easier problem.

SOCK DISTRIBUTION PROBLEM. Given n distinct pairs of socks, how many ways
are there for n people each to choose two socks? The solution to this problem shall be
denoted un .

Inclusion-exclusion allows us to compute dn as a function of u j for 1  j  n,
but we can also compute un as a function of d j by dividing into mutually exclusive,
exhaustive cases according to how many people get a matching pair. This leads to the
pair of formulas:

dn =
nX

k=0

(�1)k

✓
n
k

◆
P(n, k)un�k; (2)

un =
nX

k=0

✓
n
k

◆
P(n, k)dn�k . (3)

Thus, if we can compute dn for all n or un for all n, then we can compute the other
sequence. It seems a good bet to try for un first. However, sock distribution is not
as easy as glove distribution. To illustrate the difficulty, consider the case n = 4 and
suppose that the people are named A, B, C , and D. We begin by trying to mimic the
approach we used for gloves above: line up the socks in canonical order, minus the L
and R labels, and then assign to that list an arrangement of two copies of each name.
We quickly see that this fails, for

1 1 2 2 3 3 4 4

A B A B C C D D
and

1 1 2 2 3 3 4 4

B A A B C C D D

result in the same people having the same socks, as will the name permutations
AB B ACC DD and B AB ACC DD. Similarly, there are 8 name permutations that
result in the same sock distribution as AB AC BC DD, and 16 for ABC D ABC D.
Surely there is a simpler way.

As a stab at computing dn directly, we break it down by first forming sock pairs and
then distributing them, as we did in the first version of the glove problem. (Here and
in the rest of this paper, a sock pair refers to any two socks to be distributed to a single
person, whether matching or not.) Line up one sock of each type in order, then pair
them up with a derangement of the remaining socks. For example,

1 2 3 4

4 1 2 3
or

1 2 3 4

2 3 4 1
or

1 2 3 4

4 3 2 1
.

Even in this small case, several problems become apparent. The first two derange-
ments, which we hoped would be distinct, both result in the same four sock pairs:



100 MATHEMATICS MAGAZINE

{1, 4}, {1, 2}, {2, 3}, and {3, 4}. Furthermore, the third derangement results in repe-
tition of sock pairs: {1, 4}, {1, 4}, {2, 3}, and {2, 3}. Thus, while there are 4! ways to
distribute the sock pairs of the first two derangements, there are only 4!/22 ways to dis-
tribute the sock pairs from the third derangement. As the number of socks and people
increase, these problems only get worse.

These cursory attempts demonstrate that switching from gloves to socks signifi-
cantly complicates matters. In fact, this problem has been addressed before, as one
case of a larger problem. In the most general form of the problem, we define H(n, r)
to be the number of ways of distributing r copies of n distinct objects among n people,
each person getting exactly r objects in total. The first correct solution to the r = 2
version of the problem was given by Kenji Mano in 1961 (see [2]), in the form of a
pair of rather complicated recursive formulas. In this paper, we show how the problem
can be attacked using a variety of basic weapons in the discrete mathematics arsenal.
We make use of partitions, cyclic permutations, recurrence relations, and generating
functions. We obtain solutions in the form of both recursive and (two different) non-
recursive formulas, closed forms of an exotic variation on the generating functions,
and finally, with the help of a couple of big guns from complex analysis, asymptotic
formulas.

Partitions and cyclic permutations

In this section we return to our earlier approach for computing both dn and un . We
will first form n sock pairs and then distribute them to n people. We will find that both
parts offer challenges that we did not encounter when sorting gloves. We begin with
an example.

Consider the following pairing of socks, using the colors Red, Blue, Green, Yellow,
Orange, Pink, White, Violet, Magenta, and Carbon:

{{R,O}, {M,C}, {P,G}, {P,B}, {R,O}, {W,B}, {C,V }, {M,V }, {Y,Y }, {G,W }} .

We see that every color appears exactly twice. Additionally, we have a matched pair,
which is allowable for un but not for dn . Chains, or cycles, of colors can naturally be
formed from this set as follows: We pick any color to begin with, say Pink, and find
a color that is paired with Pink. There is a pair {P,G}, so we might choose Green.
Then we find another color that is paired with Green, and so on, using each pair only
once. In this case, Pink is paired with Green, Green is paired with White, White is
paired with Blue, and Blue is paired with Pink, ending the first cycle. After a cycle
ends, we pick a color that we haven’t used yet and repeat, until we have used all of the
colors. Red is paired with orange, which is paired with Red again. Magenta is paired
with Carbon, Carbon is paired with Violet, and Violet is paired with Magenta. Finally,
Yellow is paired only with Yellow.

P

G

W

B

R

O

M

CV

Y

These are cycles, not just sets.
Since every color appears exactly twice in this set of sock pairs and the number of

colors is finite, this process will always produce cycles (beginning and ending with
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the same color). Furthermore, a cycle accounts for both copies of each color, each
cycle can be thought of as a permutation of the colors involved, and no two cycles
have any colors in common. Therefore, the entire set of sock pairs naturally cor-
responds to a permutation of the color set, written as a product of disjoint cycles:
(PGW B)(RO)(MCV )(Y ). In fact, this set of sock pairs corresponds to more than
one permutation, since each cycle can be reversed. (Order in the set of sock pairs, as
well as in each individual sock pair, does not matter.)

Conversely, any permutation of the color set, which we know can be written as
a product of disjoint cycles, naturally corresponds to a set of sock pairs, by placing
adjacent colors into a pair. For example, the permutation

(RY V )(G M O)(C P)(B)(W )

gives us the set of sock pairs

{{R,Y }, {Y,V }, {V,R}, {G,M}, {M,O}, {O,G}, {C,P}, {P,C}, {B,B}, {W,W }}

This correspondence between the set of sock pairs and the set of permutations of
the color set holds for all such examples, and while it is not one-to-one, we can still
use it to reach our goal. But first, we simplify our notation, so that we can more easily
address the general problem.

We label the pairs of socks from 1 to n (that is, we have two socks labeled 1, two
socks labeled 2, etc), referring to these as the colors of the socks. Consider any possible
pairing of the 2n socks, M = {{i1, i2}, {i3, i4}, . . . , {i2n�1, i2n}}. Order in each pair does
not matter. For the moment we will allow matched pairs. Thus, for any given color i
we have three possibilities: i is paired with itself; i is paired with j twice, for some
j 6= i ; or i is paired once with j and once with k, where i , j , and k are distinct. We
notice that every color appears exactly twice in M .

We will say that i and j are directly linked by M if {i, j} 2 M , and we will say that
i and j are linked by M if we can get from i to j in a finite number of direct links. The
relation of being linked is clearly symmetric and transitive, and since there are only
finitely many colors, it must also be reflexive. Thus we have an equivalence relation on
the set of colors {1, 2, . . . , n}. Now let P(M) be the corresponding set of equivalence
classes; that is, P(M) is the collection of subsets of {1, 2, . . . , n} where i and j are in
the same subset if and only if they are linked by M . Thus, P(M) is a partition of the
set {1, 2, . . . , n}.

As we saw in the example above, M induces a cyclic structure on the subsets in
P(M), by placing the colors that are directly linked by M adjacent to one another. That
is, every subset of P(M) corresponds to an element of Sn , the permutation group on n
elements, written as a single cycle. For example, if {i, i} 2 M , then {i} 2 P(M), corre-
sponding to the 1-cycle (i). Likewise, if {i, j} appears in M twice, then {i, j} 2 P(M),
corresponding to the 2-cycle (i j). Finally, if {i1, i2}, {i2, i3}, . . . , {ik, i1} 2 M , k � 3,
then {i1, i2, . . . , ik} 2 P(M), corresponding to two distinct k-cycles: (i1i2 · · · ik) and
its inverse (i1ikik�1 · · · i2). Thus, every set of sock pairs M corresponds to an element
of Sn , written as a product of disjoint cycles. Likewise, since every permutation of Sn

can be written as a product of disjoint cycles, every permutation in Sn corresponds to
a set of sock pairs.

Let C(a1, a2, . . . , an) denote the number of permutations in Sn , written as a prod-
uct of disjoint cycles, with ai i-cycles for all 1  i  n. Notice that all of the ai are
nonnegative, and it has to be the case that 1a1 + 2a2 + · · · + nan = n. To calculate



102 MATHEMATICS MAGAZINE

C(a1, a2, . . . , an) we first partition the set {1, 2, . . . , n} into a1 subsets of size 1, a2

subsets of size 2, and so on. The number of ways in which we can do this is
✓

n
1

◆
· · ·
✓

n � a1 + 1
1

◆
1

a1!

✓
n � a1

2

◆
· · ·
✓

n � a1 � 2a2 + 2
2

◆
1

a2!
· · ·

= n!
a1! · · · an! (1!)a1 · · · (n!)an

.

The factors 1/(ai !) arise because, when we write a permutation as a product of dis-
joint cycles, the order in which the cycles appear does not matter. To complete the
calculation of C(a1, a2, . . . , an) we need to make a cycle out of every subset in the
partition. Recalling that there are ( j � 1)! ways to make a cycle of length j from j
distinct elements, we get

C(a1, a2, . . . , an) = n!
a1! · · · an! (1!)a1 · · · (n!)an

(0!)a1 · · · ((n � 1)!)an

= n!
a1! · · · an! 1a1 · · · nan

.

Now let C⇤(a1, a2, . . . , an) denote the number of ways to form a set of n sock pairs,
corresponding to a permutation with ai i-cycles. We saw above that for cycles of length
3 or greater, there are exactly two cycles that correspond to the same set of sock pairs.
Therefore,

C⇤(a1, a2, . . . , an) = C(a1, a2, . . . , an) · 1
2a3+···+an

.

After we have formed our sock pairs, distributing them is relatively easy. For the
most part, one sock pair will be distinct from another. However, every time we have
a cycle of length 2, we get two identical sock pairs. Thus, the number of ways we
can distribute a set M of n sock pairs corresponding to a permutation with ai i-cycles,
1  i  n, is n!/2a2 .

To calculate un , we multiply n!/2a2 by C⇤(a1, a2, . . . , an) and then sum over all
possible nonnegative values a1, a2, . . . , an such that 1a1 + 2a2 + · · · nan = n. To cal-
culate dn we do the same, but additionally we require that a1 = 0, so that no sock is
paired with one of the same color. Thus,

un =
X (n!)2

a1! · · · an! 1a1 · · · nan 2a2+···+an
(4)

and

dn =
X (n!)2

a2! · · · an! 2a2 · · · nan 2a2+···+an
. (5)

In these sums, there is one term for each sequence (a1, . . . , an) satisfying a1 + 2a2 +
3a3 + · · · + nan = n.

The difficulty with this approach is in finding all possible nonnegative values
a1, a2, . . . , an such that 1a1 + 2a2 + · · · + nan = n. Below we work out the case
when n = 6. For u6 we sum all of the entries in the fourth column of the table, and for
d6 we exclude the rows where a1 6= 0.

This yields u6 = 202,410 and d6 = 67,950.
To conclude this section, we outline a recursive algorithm for finding all the n-

tuples needed for the calculations of dn and un . Actually, we show how to solve a
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TABLE 1: Calculating u6 and d6

(a1, a2, a3, a4, a5, a6) C⇤(a1, a2, a3, a4, a5, a6)
n!

2a2 C⇤(a1, a2, a3, a4, a5, a6)
n!

2a2

(0, 0, 0, 0, 0, 1) 60 720 43200
(1, 0, 0, 0, 1, 0) 72 720 51840
(0, 1, 0, 1, 0, 0) 45 360 16200
(2, 0, 0, 1, 0, 0) 45 720 32400
(0, 0, 2, 0, 0, 0) 10 720 7200
(1, 1, 1, 0, 0, 0) 60 360 21600
(3, 0, 1, 0, 0, 0) 20 720 14400
(0, 3, 0, 0, 0, 0) 15 90 1350
(2, 2, 0, 0, 0, 0) 45 180 8100
(4, 1, 0, 0, 0, 0) 15 360 5400
(6, 0, 0, 0, 0, 0) 1 720 720

slightly more general problem. Let M and n be nonnegative integers. We wish to find
all solutions (a1, a2, . . . , an) of nonnegative integers to the equation

1a1 + 2a2 + · · · + nan = M. (6)

First, note that ai = 0 whenever i > M . To organize the process, we break down the
solutions in terms of the position of last nonzero entry.

Let 1  i  n such that ai 6= 0, and a j = 0 for all j > i . (We will start with i = n
and work our way down to i = 1.) It follows that 1  ai  b M

i c. More importantly,
ai can have any value in this range with a single exception: if i = 1, then a1 = M
is the only solution. For i > 1, we fix a value for ai , and let m = M � iai . (Note
that 0  m < M .) If we have m = 0, then all the remaining variables in the solution
(a1, a2, . . . , an) must be zero. If m > 0, then we complete the solution by solving the
equation

1a1 + 2a2 + · · · + (i � 1)ai�1 = m. (7)

This, of course, is the recursive part. Since the number of variables in equation (7) is
strictly smaller than the number of variables in equation (6), we know the process will
end in a finite number of steps. After we have found all the solutions for each allowable
value of ai , we decrease i by one and start all over again.

Recurrence relations

Although we now have a solution, the difficulty of the calculations involved motivates
us to try another approach. A common combinatorial strategy is to model problems
with recurrence relations, and this tactic was used successfully by the Indian mathe-
maticians Anand, Dumir, and Gupta in 1966 (see [1]). In this section, we present a
streamlined version of their solution. Beginning with un , we divide into cases accord-
ing to what happens to the last pair of socks.

Case 1. One of n people gets {n, n}; this can happen in nun�1 ways.

Case 2. If pair n is split, there are two subcases to consider.

Subcase (i). We have two sock pairs of the form {i, n} for some 1  i < n; we
choose 2 people to distribute them to, then distribute the remaining n � 2 pairs of
socks. There are

�n�1
1

��n
2

�
un�2 such distributions.



104 MATHEMATICS MAGAZINE

Subcase (ii). Pair n gets split into {i, n} and { j, n} for some 1  i < j < n and
these get distributed to 2 people. Temporarily consider the remaining sock i and sock
j as a matching pair. If we distribute these n � 2 ‘pairs’ in un�2 ways, we are under-
counting by a factor of 2 those distributions in which i and j go to different people. By
the reasoning in Case 1, i and j go to the same person in exactly (n � 2)un�3 ways.
Hence, there are

�n�1
2

�
P(n, 2)[2un�2 � (n � 2)un�3] such distributions.

After some algebraic simplification, we get the recurrence relation

un = nun�1 + n(n � 1)2

2

⇥
(2n � 3)un�2 � (n � 2)2un�3

⇤
, for n � 3.

We require three initial conditions; on the basis that “there is always one way to do
nothing” (as one of our students puts it), we have u0 = 1, u1 = 1, u2 = 3.

A similar analysis gives a recurrence relation for dn . We can ignore Case 1, and in
subcase (i) of Case 2, we simply replace un�2 with dn�2. The latter part of subcase (ii)
requires some modification because dn�2 will not count distributions in which some-
body gets the ‘pair’ {i, j}. We can count these separately by giving {i, j} to one of
n � 2 people and then distributing the remaining pairs in dn�3 ways. The distributions
in which {i, j} is split number exactly 2dn�2. A bit of algebra yields

dn = n(n � 1)2

2

⇥
(2n � 3)dn�2 + (n � 2)2dn�3

⇤
, for n � 3.

The corresponding initial conditions are d0 = 1, d1 = 0, d2 = 1.
Armed with these relations and Maple, we can easily generate values for un and dn;

we display the first ten in the table below.

TABLE 2: Some values of u

n

and d

n

n un dn

3 21 6
4 282 90
5 6210 2040
6 202,410 67,950
7 9,135,630 3,110,940
8 545,007,960 187,530,840
9 41,514,583,320 14,398,171,200
10 3,930,730,108,200 1,371,785,398,200

There are several things to notice about these numbers. First, the values for n = 6
agree with those in the previous section, happily. Second, like many combinatorial
quantities, they grow amazingly quickly. Third, un is roughly three times dn . More
precisely, as n increases, further computations show that dn/un approaches 1/e, the
same ratio that Dn/n! approaches, although the former at a slower rate than the latter.
This is the first of several intriguing connections to the derangement numbers.

The Online Encyclopedia of Integer Sequences contains both of these sequences,
described somewhat differently: (un) is sequence A000681, which counts the number
of n ⇥ n nonnegative integer matrices such that every row sums to 2 and every column
sums to 2, and (dn) is sequence A001499, which counts the number of n ⇥ n, 0 � 1
matrices with exactly two 1’s in each row and each column. The connection becomes
obvious if we formulate the sock problem graph theoretically. Define a bipartite graph
G = (X, Y, E) with |X | = |Y | = n; each vertex in X represents a matching sock pair,
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and each vertex in Y represents a person. If each vertex has degree two, then everybody
gets exactly two mismatched socks, and the incidence matrix is precisely an n ⇥ n,
0 � 1 matrix with exactly two 1’s in each row and each column. The number of such
incidence matrices is the solution to the Deranged Sock Problem. For the more general
Sock Distribution Problem, we keep the requirement that G be 2-regular, but allow
multiple edges.

Generating functions

Once we have recurrence relations for un and dn , a natural impulse is to attempt to
solve them to obtain non-recursive formulas, with the hope that they are simpler than
the ones we found in our first approach. That the recurrence relations are nonlinear
suggests that we try a generating function approach: That both un and dn involve ar-
rangements suggests that we use exponential generating functions. To this end, we
define the formal power series

F(x) =
1X

n=0

un
xn

n! and G(x) =
1X

n=0

dn
xn

n! ,

or equivalently,

F(x) =
1X

n=0

un

n! xn and G(x) =
1X

n=0

dn

n! xn.

The point of this slight rewriting is to take advantage of a slight rewriting of equa-
tion (3) from the introduction. Since P(n, k) = n!/(n � k)!, we get

un

n! =
nX

k=0

✓
n
k

◆
dn�k

(n � k)! .

If we let �n = un/n! and �n = dn/n!, then the equation above can be expressed as

�n =
nX

k=0

✓
n
k

◆
�n�k . (8)

At this point, a notational trick from combinatorial analysis pays great dividends.
When working with generating functions of the sequence a0, a1, a2, . . . , we can stip-
ulate that an ⌘ an . Then the ordinary and exponential generating functions of the se-
quence become, respectively,

1X

n=0

an xn =
1X

n=0

an xn = 1
1 � ax

and
1X

n=0

an
xn

n! =
1X

n=0

an xn

n! = eax .

Remarkably, all formal operations with power series carry through with the constant
indices treated as powers. If we set �n ⌘ �n and �n ⌘ �n , then equation (8) becomes

�n =
nX

nk=0

✓
n
k

◆
�n = (1 + �)n. (9)

This yields
P

�n xn = P
(1 + �)n xn, which can be rearranged to produce

1
1 � �x

= 1
1 � (1 + �)x

= 1
(1 � �x) � x

= 1
1 � �x


1 + x

1 � �x

�
.
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By definition, the ordinary generating function of the �n is F(x), the exponential
generating function of the un; similarly, the ordinary generating function of the �n is
G(x). Thus we have shown

F(x) = G(x) [1 + x F(x)] .

As pretty as this relationship is, it is not clear how it can help us find non-recursive
formulas for un and dn . However, another way we can use (9) is to obtain

1X

n=0

�n xn

n! =
1X

n=0

(1 + �)n xn

n! ,

which simplifies to

e�x = e(1+�)x = ex e�x . (10)

This gives a relationship between what we term the double-exponential generating
functions,

f (x) = e�x =
1X

n=0

un

n!
xn

n! and g(x) = e�x =
1X

n=0

dn

n!
xn

n! .

We can now observe another tantalizing connection to the derangement numbers.
The exponential generating function of the Dn is known to be D(x) = e�x/(1 � x).
Since 1/(1 � x) can be interpreted as the exponential generating function U (x) of the
permutation numbers, n!, we have U (x) = ex D(x), the same relationship as (10). This
suggests that we investigate these double-exponential generating functions further.

Double-exponential generating functions

We now exploit our earlier analysis in terms of partitions and cyclic permutations.
Recall that the number of permutations of n objects consisting of ai i-cycles is given
by

C(a1, a2, . . . , an) = n!
a1! · · · an! 1a1 · · · nan

.

In [4], Riordan shows that a multivariable ordinary generating function for these
numbers is

Cn(t1, t2, . . . , tn) =
X n!

a1! · · · an!

✓
t1

1

◆a1

· · ·
✓

tn

n

◆an

,

where the sum is over all nonnegative integers a1, . . . , an satisfying a1 + 2a2 + · · · +
nan = n. Riordan further demonstrates that

1X

n=0

Cn(t1, . . . , tn)
xn

n! = exp
✓

t1
x
1

+ t2
x2

2
+ t3

x3

3
+ t4

x4

4
+ · · ·

◆
.

Expressing the results (4) from our earlier approach in this new notation, we obtain

un

n! = Cn

✓
1,

1
2
, . . . ,

1
2

◆
and

dn

n! = Cn

✓
0,

1
2
, . . . ,

1
2

◆
,
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which in turn leads to

f (x) = exp
✓

x + 1
2


x2

2
+ x3

3
+ x4

4
+ · · ·

�◆

= exp
✓

1
2


log

1
1 � x

+ x
�◆

= ex/2

p
1 � x

;

g(x) = exp
✓

1
2


x2

2
+ x3

3
+ x4

4
+ · · ·

�◆

= exp
✓

1
2


log

1
1 � x

� x
�◆

= e�x/2

p
1 � x

.

(An alternate derivation of these formulas appears in section 8 of [1].)
We can now use the closed expressions of the double-exponential generating func-

tions to derive another set of non-recursive formulas for un and dn . Recall the binomial
series expansion

1p
1 � x

= (1 � x)�1/2 =
1X

n=0

✓�1/2
n

◆
(�x)n,

where
��1/2

0

�
= 1 and for n � 1,
✓�1/2

n

◆
= (�1/2)(�3/2)(�5/2) · · · (�1/2 � n + 1)

n!

= (�1)n1 · 3 · 5 · · · (2n � 1)

2nn! .

Observe that this series can be viewed as the exponential generating function of the
sequence an = [1 · 3 · 5 · · · (2n � 1)]/2n . Using the formal procedure for multiply-
ing exponential series, and remembering that f (x) and g(x) are double-exponential
generating functions, we obtain

un = n!
2n

 

1 +
nX

k=1

✓
n
k

◆
1 · 3 · 5 · · · (2k � 1)

!

,

dn = n!
2n

 

(�1)n +
nX

k=1

✓
n
k

◆
1 · 3 · 5 · · · (2k � 1)(�1)n�k

!

.

Asymptotic behavior

We now have both recursive and non-recursive formulas for un and dn , but neither shed
much light on the observation that, just like Dn/n!, the ratio dn/un approaches 1/e as
n increases. To gain insight into this behavior, we must delve more deeply into the
theory of generating functions.

By merely replacing the variable x with z, we can mentally transform a formal
power series into a function of complex variables, which must be analytic on some
disk in the complex plane centered at 0. In particular, f (z) = ez/2/

p
1 � z and g(z) =

e�z/2/
p

1 � z are each analytic in the unit disk, with a single algebraic singularity at
z0 = 1. Fortunately, some heavy machinery from complex analysis exists for exactly
this sort of function. The following can be found in [6].
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THEOREM 1. (DARBOUX’S LEMMA) Let v(z) be analytic in some disk |z| <
1 + ⌘ where ⌘ > 1. Let � 2 R\{0, 1, 2, . . .}. Suppose that in a neighborhood of
z = 1, v(z) = P

vn(1 � z)n. Then for every integer m � 0, the coefficient of zn in the
expansion of v(z)(1 � z)� is

"
mX

k=0

✓
� + k

n

◆
(�1)nvk

#

+ O(n�m���2).

To apply this to f (z), we use v(z) = ez/2. This is an entire function; its Taylor
expansion centered at z = 1 is

ez/2 =
1X

n=0

v(n)(1)

n! (z � 1)n =
1X

n=0

(�1)ne1/2

2nn! (1 � z)n.

Then using Darboux’s Lemma with m = 2, we obtain

un

(n!)2
= e1/2

✓�1/2
n

◆
+ 1

2

✓�3/2
n

◆
+ 1

8

✓�5/2
n

◆�
+ O(n�7/2). (11)

For large values of n, we can simplify the fractional binomial coefficients in this
expression with this result, also in [6].

THEOREM 2. Let ↵ 2 R\{0, 1, 2, . . .}. Then as n ! 1,
✓

↵

n

◆
⇠ (�1)nn�↵�1

0(�↵)
.

The appearance of the gamma function need not overly alarm us, as we can com-
pute all the values we need from the simple pair of properties 0(1/2) = p

⇡ and
0(z)0(1 � z) = ⇡/sin ⇡ z (see [3]). Substituting into (11), we get for large values
of n,

un ⇠ (n!)2e1/2

p
n⇡


1 + 1

4n
+ 3

32n2

�
.

Replacing v(z) = ez/2 with w(z) = e�z/2, we get an asymptotic formula for dn:

dn ⇠ (n!)2e�1/2

p
n⇡


1 � 1

4n
+ 3

32n2

�
.

The table below illustrates how accurate these approximations are, even for small
values of n.

TABLE 3: Asymptotic values of u

n

and d

n

.

n un
(n!)2e1/2

p
n⇡

h
1+ 1

4n + 3
32n2

i
dn

(n!)2e�1/2
p

n⇡

h
1� 1

4n + 3
32n2

i

5 6210 6312.3 2040 2101.8
10 3.931⇥1012 3.974⇥1012 1.371⇥1012 1.391⇥1012

20 1.239⇥1036 1.247⇥1036 4.444⇥1035 4.474⇥1035

30 1.200⇥1064 1.205⇥1064 4.341⇥1063 4.360⇥1063

40 9.823⇥1094 9.853⇥1094 3.568⇥1094 3.580⇥1094

50 1.220⇥10128 1.223⇥10128 4.443⇥10127 4.454⇥10127
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The asymptotic formulas finally clear up the mystery:

lim
n!1

dn

un
= lim

n!1

(n!)2e�1/2
p

n⇡

⇥
1 � 1

4n + 3
32n2

⇤

(n!)2e1/2p
n⇡

⇥
1 + 1

4n + 3
32n2

⇤ = 1
e
.
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Summary It is an elementary combinatorial problem to determine the number of ways n people can each choose
two gloves from a pile of n distinct pairs of gloves, with nobody getting a matching pair. Change the gloves to
socks (with right socks being indistinguishable from left socks), however, and the problem becomes surprisingly
more difficult. We show how this problem can be solved using a wide range of discrete mathematics tools: the
principle of inclusion-exclusion; partitions; cyclic permutations; recurrence relations; as well as both ordinary
and exponential generating functions. We even draw on a result from complex analysis to show that the fraction
of all sock distributions that are deranged in this sense converges to 1/e.
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specific personality. Some look happy, some look sad, some look devilish and,
yes, some look deranged.
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of them. He and photographer Arne Swenson have documented his collection in
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Annie Stromquist’s linocut and watercolor portrait on this month’s cover was
inspired by the book.
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