Unit 29: Inference for Two-Way Tables

PREREQUISITES

Unit 13, Two-Way Tables is a prerequisite for this unit. In addition, students need some background in significance tests, which was introduced in Unit 25.

ADDITIONAL TOPIC COVERAGE

Additional coverage of inference for two-way tables can be found in *The Basic Practice of Statistics*, Chapter 23, Two Categorical Variables: The Chi-Square Test.

ACTIVITY DESCRIPTION

Students should work in small groups on this activity. The activity consists of three parts. The first part provides a justification for the formula for computing the expected cell counts for chi-square tables. Students can work on Part I on their own or it could be part of a lecture/ class discussion. Parts II and III involve two different structures for datasets, both of which are appropriate for the chi-square analysis covered in this unit.

Here are the two data structures: (1) subjects from a single sample are classified according to two categorical variables and (2) subjects from multiple samples (drawn from different populations) are classified according to a single categorical variable. In the latter case, "which sample" can be thought of as the second categorical variable. In the first case, a chi-square test for independence is performed; in the second case, a chi-square test for homogeneity is performed. The chi-square test statistics and the analyses are the same for both situations. So, in this unit, we have put little emphasis on distinguishing between these two situations.

MATERIALS

For Part III, bags of at least two different types of M&Ms are needed. Large-sized bags were used for the sample data, with the exception of the M&Ms minis, for which a medium bag was purchased. In addition, students will need paper plates or bowls to contain the M&Ms while they are being counted.

Part I: Introduction – Assumption of Independence and Expected Count Formula

Part I provides an explanation of the expected counts formula used in a chi-square test of independence. Students need to be familiar with the Multiplication Rule from Unit 19, Probability Models. This part could be approached either as an activity or as part of an informal lecture that introduces the topic of this activity. It could also be skipped and students could move directly to Part II.

Part II: Single Sample, Classified on Two Categorical Variables

For this part, students will need to collect data from people. The class could serve as the sample, or perhaps combine this class with another class, or have students add their friends to the sample. Students will need to classify each individual in the sample by gender and eye color. An easy way to collect the data is to draw a table on the board. Each student should come up to the board and put a tally line in the appropriate box for gender and eye color. After students have completed their entries, numbers can replace the tally marks. Students can then copy the table from the board and begin work on Part II.

Part III: Multiple Samples, Classified on One Categorical Variable

Students should work in groups to collect the data on the M&Ms colors. Again, you may want to put a chart on the board and have students enter their results for each color as they finish sorting their M&Ms into colors. Once the data are collected, groups will need a copy of the class data. Since the resulting two-way table is quite large, group members should be encouraged to divide up the work of computing the expected cell counts.

The color distribution of M&Ms differs by types and has changed over the years. You can write to Mars, the makers of M&Ms, for the latest color distribution in its candies.

THE VIDEO SOLUTIONS

1. Dr. Pardis Sabeti investigates the nonstop evolutionary arms race between our bodies and the infectious microorganisms that invade and inhabit them. In other words, she investigates connections between genotypes and protections from infectious diseases. Her work on Lassa fever is still in its early stages.

- 2. Sickle cell anemia hemoglobin mutation, HbS.
- 3. H_0 : No association betweeen malaria and HbS.
 - H_a : Association between malaria and HbS.
- 4. Expected count = $\frac{(\text{row total})(\text{column total})}{\text{grand total}}$.

5. We reject the null hypothesis and conclude that there is an association between the HbS gene and malaria.

UNIT ACTIVITY: ASSOCIATIONS WITH COLOR SOLUTIONS

Part I: Introduction – Assumption of Independence and Expected Count Formula

1. a. $P(\text{DEM and female}) = P(\text{DEM}) P(\text{female}) = \left(\frac{196}{500}\right) \left(\frac{246}{500}\right) \approx 0.1929$

b. Expected number =
$$\left(\frac{196}{500}\right)\left(\frac{246}{500}\right)(500) = \frac{(196)(246)}{500} \approx 96.432$$

c. Expected count = $\frac{(196)(246)}{500}$ \square 96.432

d. *P*(DEM and male) = *P*(DEM)*P*(male) =
$$\left(\frac{196}{500}\right) \left(\frac{254}{500}\right) \approx 0.1991$$

Expected number =
$$\left(\frac{196}{500}\right)\left(\frac{254}{500}\right)(500) = \frac{(196)(254)}{500} \approx 99.57$$

Expected count =
$$\frac{(196)(254)}{500}$$
 \Box 99.57

2. a.

	Expected	Male	Female	Total
Political	DEM (Blue)	96.43	99.57	196
Preference	GOP (Red)	91.02	93.98	185
Color	IND (White)	58.55	60.45	119
	Total	246	254	500

b.
$$\chi^2 = +\frac{(107 - 96.43)^2}{96.43} + \frac{(89 - 99.57)^2}{99.57} + \dots + \frac{(56 - 60.45)^2}{60.45} \approx 7.825$$

 $df = (3 - 1)(2 - 1) = 2; \ p \approx 0.02$

c. There is sufficient evidence to reject the null hypothesis. There is association between these two variables. In other words, they are dependent.

			Eye Color		
Count		Blue	Brown	Other	TOLAT
Condor	Male	8	20	6	34
Gender	Female	4	16	12	32
	Total	12	36	18	66

3. a. Sample data will be used to provide sample answers.

b. H_0 : No association between gender and eye color.

 H_a : Association between gender and eye color.

c. Sample answer:

		Eye Color			
Count		Blue	Brown	Other	Total
Gender	Male	8	20	6	34
		6.18	18.55	9.27	
	Female	4	16	12	32
		5.82	17.45	8.73	
	Total	12	36	18	66

d. Sample answer:

$$\chi^{2} = \frac{\left(8 - 6.18\right)^{2}}{6.18} + \frac{\left(20 - 18.55\right)^{2}}{18.55} + \dots + \frac{\left(12 - 8.73\right)^{2}}{8.73} \approx 3.72 \quad ; \ df = 2$$

 $p \approx 0.151$. There is insufficient evidence to reject the null hypothesis. In other words, there is no strong evidence to suggest that there is an association between eye color and gender.

4. a. Sample data (will be used for sample answers) (See next page...):

	Count	Type 1 Dark	Type 2 Regular	Type 3 Peanut	Type 4 Mini	Total
	Green	112	109	41	228	490
	Blue	188	160	39	203	590
Color	Yellow	75	91	47	210	423
COIOI	Orange	141	123	36	187	487
	Red	81	62	20	221	384
	Brown	59	84	30	100	273
	Total	656	629	213	1149	2647

b. H_0 : No association between M&M type and color distribution.

 H_a : Association between M&M type and color distribution.

c. Sample answer:

	Count	Type 1 Dark	Type 2 Regular	Type 3 Peanut	Type 4 Mini	Total	
	Green	112	109	41	228	490	
		121.4	110.4	39.4 20	212.7		
	Blue	146.2	140.2	39 47.5	203 256.1	590	
	Vollow	75	91	47	210	102	
Color	Tellow	104.8	100.5	34	183.6	425	
000	Orange	141	123	36	187	487	
	Orange	120.7	115.7	39.2	211.4	407	
	Red	81	62	20	221	384	
	Reu	95.2	91.2	30.9	166.7	304	
	Brown	59	84	30	100	273	
	DIOWII	67.7	64.9	22	118.5	215	
	Total	656	629	213	1149	2647	

d. $\chi^2 \approx 100.3$; df = (6 – 1)(4 – 1) = 15; $p \approx 0$

There is an association between M&Ms type and color distribution. In other words, Different types of M&Ms have different color distributions.

EXERCISE SOLUTIONS

1. a. There were two cells with expected counts less than 1. The guidelines call for all expected counts to be greater than 1. Also, there were 7 cells with expected counts below 5. That means that around 39% of the cells have expected counts under 5. The guidelines state that no more than 20% of the cells should have expected counts less than 5.

b. See solution to (c).

c. Based on the completed table below, all expected counts were greater than 1. Two expected counts were below 5, which is just under 17% of the cells. So, the expected counts in the table below meet the guidelines.

[Total			
		Count	Farm	Country	City	TOLAT
	None	Observed	57	144	598	700
	NULLE	Expected	52.55	150.44	596.01	199
	One	Observed	11	44	160	215
Energy	Expected	14.14	40.48	160.38	215	
Drinks	Drinks Two	Observed	4	13	36	53
		Expected	3.49	9.98	39.54	55
	Three	Observed	1	8	34	12
Thee +		Expected	2.83	8.10	32.08	43
	Total		73	209	828	1110

d. This is a 4×3 table; df = (4 - 1)(3 - 1) = 6. The chi-square test statistic is calculated below:

$$\chi^{2} = \frac{\left(57 - 52.55\right)^{2}}{52.55} + \frac{\left(144 - 150.44\right)^{2}}{150.44} + \frac{\left(598 - 596.01\right)}{596.01}$$
$$+ \frac{\left(11 - 14.14\right)^{2}}{14.14} + \frac{\left(44 - 40.48\right)^{2}}{40.48} + \frac{\left(160 - 160.38\right)^{2}}{160.38}$$
$$+ \frac{\left(4 - 3.49\right)^{2}}{3.49} + \frac{\left(13 - 9.98\right)^{2}}{9.98} + \frac{\left(36 - 39.54\right)^{2}}{39.54}$$
$$+ \frac{\left(1 - 2.83\right)^{2}}{2.83} + \frac{\left(8 - 8.10\right)^{2}}{8.10} + \frac{\left(34 - 32.08\right)^{2}}{32.08}$$
$$\approx 4.268$$

e. $p \approx 0.64$. (See area under density curve below.) There is insufficient evidence to reject the null hypothesis. We found no clear evidence of an association between 12th-grade students' consumption of energy drinks and their growing-up environment.

2. a. Gender is the explanatory variable. We would like to use gender to explain how students' rate their intelligence compared to their peers.

b. H_0 : No association between gender and intelligence rating.

 H_a : Association between gender and intelligence rating.

~	
С	
-	-

		Intelligence			
Count		Below Average	Average	Above Average	Total
Female	437	2243	4072	6752	
	I emaie	448.5	1951.7	4351.8	0752
Genuer	Male	456	1643	4593	6602
		444.5	1934.3	4343.2	0092
То	tal	893	3886	8665	13444

d. df = (2 - 1)(3 - 1) = 2

$$\chi^{2} = \frac{\left(437 - 448.5\right)^{2}}{448.5} + \frac{\left(2243 - 1951.7\right)^{2}}{1951.7} + \frac{\left(4072 - 4351.8\right)^{2}}{4351.8} + \frac{\left(456 - 444.5\right)^{2}}{444.5} + \frac{\left(1643 - 1934.3\right)^{2}}{1934.3} + \frac{\left(4593 - 4313.2\right)^{2}}{4313.2} \approx 124.1$$

(Answers may vary somewhat depending on the number of decimals used in the expected cell count.)

e. $p \approx 0$. Reject the null hypothesis. There is a statistically significant difference between how males and females rate their intelligence compared to their peers. (In other words, there is an association between gender and intelligence rating.)

3. a. H_0 : No association between intelligence rating and average grades.

 H_a : Association between intelligence rating and average grades.

h		
υ	•	

			Total		
Count		А	В	C or Below	Total
	Abovo	2886	4044	1387	9317
Intelligence	Above	2894.9	4055.8	1366.2	0317
	Average	1335	1881	585	3801
		1323	1853.6	624.4	
	Delaw	305	416	164	005
	Delow	308	431.6	145.4	000
Total		4526	6341	2136	13003

c. df = (3 - 1)(3 - 1) = 4

$$\chi^2 = \frac{(2886 - 2894.9)^2}{2894.9} + \dots + \frac{(164 - 145.4)^2}{145.4} \approx 6.35$$

As shown below, $p \approx 0.174$

d. We would expect to see a value from a chi-square distribution with df = 4 as or more extreme than 6.35 roughly 17.4% of the time. So, this is a somewhat common occurrence. It does not provide strong evidence against the null hypothesis. Generally strong evidence means that the percentage should be below 5%.

4. a. H_0 : No association between gender and hours worked/week.

 H_a : Association between gender and hours worked/week.

b. $\chi^2 = 12.705$; p = 0.005 < 0.05. Therefore, the results are significant. There is an association between gender and hours worked per week. (Note: The practical significance is another matter and cannot be determined by a *p*-value.)

c. The biggest discrepancy in work patterns is that a higher percentage of males did not work (43.52%) compared to females (40.59%). Furthermore, in every category of hours worked/ week, there is a higher percentage of females than males.

REVIEW QUESTIONS SOLUTIONS

1. a. H_0 : No association between habitat use and eel species.

 H_a : Association between habitat use and eel species.

b.

	Count	Spotted	Purplemouth	Total
	G	127 142.8	116 100.2	243
Habitat Use	S	99 97.5	67 68.5	166
	В	264 249.7	161 175.3	425
Total		490	344	834

c. Here are the calculations for the chi-square test statistic:

$$\chi^{2} = \frac{\left(127 - 142.8\right)^{2}}{142.8} + \frac{\left(116 - 100.2\right)^{2}}{100.2} + \frac{\left(99 - 97.5\right)^{2}}{97.5} + \frac{\left(67 - 68.5\right)^{2}}{68.5} + \frac{\left(264 - 249.7\right)^{2}}{249.7} + \frac{\left(161 - 175.3\right)^{2}}{175.3} \approx 6.28$$

The degrees of freedom are: df = (3 - 1)(2 - 1) = 2.

Using software, $p \approx 0.043$.

Since p < 0.05, we reject the null hypothesis and conclude that there is an association between habitat use and moray eel species.

d. Column percentages are more appropriate. The explanatory variable is the eel species. So, we should compare the conditional distributions of habitat use for each species of moray eel.

		Spotted	Purplemouth
Habitat	G	25.9%	33.7%
Use	S	20.2%	19.5%
	В	53.9%	40.8%
Total		100%	100%

We learn that a majority (53.9%) of the spotted moray eels were found in border habitats compared to only 46.8% of the purplemouth moray eels.

2. a. Educational attainment is the explanatory variable and voting is the response variable. We expect that a person's highest educational attainment will shed light on whether or not they voted in the 2012 elections.

b. H_0 : No association between education and voting.

 H_a : Association between education and voting.

C .		_			
			Voted Nov. 2012		Total
Count			Yes	No	
Highest Educational Attainment	Not HS Grad		57	64	101
		Expected	84.5	36.5	121
	HS Grad/No College		227	163	200
		Expected	272.3	117.7	390
	Some College/Associate's		303	51	264
		Expected	254.1	109.9	304
	Bachelor's or Higher		303	51	254
		Expected	247.1	106.9	354
	Total		858	371	1229

d.
$$\chi^2 = \frac{(57 - 84.5)^2}{84.5} + \frac{(64 - 36.5)^2}{36.5} + \dots + \frac{(51 - 106.9)^2}{106.9} \approx 100.1$$

 $df = (4 - 1)(2 - 1) = 3; p \approx 0.000$

Since p < 0.5, the results are significant. There is a relationship between these two variables.

e. Since the explanatory variable is highest educational attainment, the chart below represents graphically the conditional distributions of voting for each level of highest educational attainment.

As the level of highest educational attainment increases, so does the participation in voting. More educated people are more likely to vote than those who are not educated.

Count		Female	Male	Total
	None	896	938 045 11	1834
		000.09	940.11	
	Less than one	63	70	133
		64.46	68.54	
	0.22	16	19	25
	One	16.96	18.04	35
	Two	5	16	21
Energy Shots		10.18	10.82	
	Three	7	5	12
Day		5.82	6.18	
	Four	1	0	4
		0.48	0.52	
	Five or Six	4	4	0
		3.88	4.12	ð
	Seven or more	4	7	11
		5.33	5.67	
Total		996	1059	2055

b. No, the guidelines are not satisfied. There are two cells that have counts below 1 (0.48 and 0.52). In addition, there are 4 cells with counts less than 5, which is 25% of the cells.

c. Sample answer (students may decide to combine different categories):

	Count	Female	Male	Total
Energy Shots Consumed Per	None	896	938	1924
		888.9	945.1	1034
	One or Less	79	89	168
		81.4	86.6	
	Two or Three	12	21	33
Day		16	17	
	Four or more	9	11	20
		9.7	10.3	20
Total		996	1059	2055

d. Sample answer is based on sample answer to (c): $\chi^2 = 2.282$; $p \approx 0.52$.

There is insufficient evidence to reject the null hypothesis. There is insufficient evidence to indicate that there is a linkage between amounts of energy drink shots consumed and gender.