Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Learning Math Home
Data Measurement and Variation Session 1, Part C
Session 1 Part A Part B Part C Part D Homework
Data Site Map
Session 1 Materials:

Session 1, Part C:
Bias in Measurement (20 minutes)

In This Part: Measurement Error | Testing Your Measurement Bias

Measurement is never perfect, and we can always expect measurement errors in our data. Our goal, of course, is to keep these errors to a minimum. For this reason, we need to be aware of the various sources and causes of measurement error. Note 3

Random error is a nonsystematic measurement error that is beyond our control, though its effects average out over a set of measurements. For example, a scale may be properly calibrated but give inconsistent weights (sometimes too high, sometimes too low). Over repeated uses, however, the effects of these random errors average out to zero. The errors are random rather than biased: They neither understate nor overstate the actual measurement.

In contrast, measurement bias, or systematic error, favors a particular result. A measurement process is biased if it systematically overstates or understates the true value of the measurement. Consider our scale example again. If a scale is not properly calibrated, it might consistently understate weight. In this case, the measuring device -- the scale -- produces the bias. Human observation can also produce bias. The important thing to keep in mind is that biased measurements invariably produce unreliable results.

In any statistical investigation, we can always attribute some of the variation in data to measurement error, part of which can result from the measurement instrument itself. But human mistakes, especially recording errors (e.g., misreading a dial, incorrectly writing a number, not observing an important event, misjudging a particular behavior), can also often contribute to the variability of the measurement and thus to the results of a study.

video thumbnail

Video Segment
In this video segment, Norm Abram discusses measurement error and bias in carpentry. What examples of bias, or systematic error, were present in this discussion? How could these be avoided?

If you're using a VCR, you can find this segment on the session video approximately 23 minutes and 31 seconds after the Annenberg Media logo.


video thumbnail

Video Segment
In this video segment, Professor Kader and participants discuss the presence of bias in two surveys about nuclear power, including the one presented in Problem B8. How did the surveys' designs bias the studies' findings?

If you're using a VCR, you can find this segment on the session video approximately 16 minutes and 51 seconds after the Annenberg Media logo.


Next > Part C (Continued): Testing Your Measurement Bias

Learning Math Home | Data Home | Register | Glossary | Map | ©

Session 1: Index | Notes | Solutions | Video


© Annenberg Foundation 2017. All rights reserved. Legal Policy