Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Search
MENU
Teacher Resources/Science
Overview
Chemistry: Challenges and Solutions
 

A video-based instructional series in chemistry with accompanying web site for high school and college classes. 13 half-hour programs, online text, course guide, interactive lessons, historical timeline and periodic table.

Chemistry: Challenges and Solutions teaches concepts of general chemistry by presenting real challenges in energy production, materials development, biochemistry, and environmental protection. The course zeroes in on core topics taught in introductory chemistry, providing a strong foundation for learners to pursue further study in science, med-tech fields, or a liberal education. Videos include lab demonstrations of key laws and processes, interviews with research scientists and industrial chemists, and explanatory animations. An online text covers science history and major discoveries with clear explanations and graphics. Interactive labs provide hands-on simulations of chemical processes.

Produced by the Harvard-Smithsonian Center for Astrophysics. 2014.

ISBN:
Balancing and sequencing interactions between acids and bases is essential in the production of a tasty cake.
Balancing and sequencing interactions between acids and bases is essential in the production of a tasty cake.

Enter the Series Web Site
Overview
Individual Program Descriptions
Printable Page
Buy Videos and Materials
Related Resources See all
Physics for the 21st Century
Reactions in Chemistry
The World of Chemistry
Rediscovering Biology: Molecular to Global Perspectives
Essential Science for Teachers: Physical Science
 
Periodic Table
Individual Program Descriptions

VOD1. Matter and the Rise of Atomic Theory: The Art of the Meticulous
This introduction to chemistry, from a practical discipline in ancient times to the science it is today, touches on both major advances and discarded theories. The contributions to atomic theory of Dalton, Proust, Lavoisier, as well as those of the Arabic scientist, Jābir ibn Ḥayyān, who died in 803 AD, are discussed. The modern-day application of chemists' quest to refine and purify substances is demonstrated at a solar panel plant where a common material — silica sand — is transformed into photovoltaic panels.

VOD2. The Behavior of Atoms: Phases of Matter and the Properties of Gases
By documenting how particles behaved in different states of matter, 19th century scientists gained a deeper understanding of the atom. Avogadro's suggestion that a volume of any gas, under equal temperature and pressure, contains the same number of particles, led to an understanding of the relationship between temperature and pressure and to the Ideal Gas Law. Today, a fourth state of matter, the supercritical fluid, may possibly help mitigate the impact of burning fossil fuels by storing carbon dioxide as a supercritical fluid within the Earth. Researchers are developing methods to pack hydrogen gas into carbon nanostructures for use as fuel in hydrogen-powered vehicles.

VOD3. Atoms and Light: Exploring Atomic and Electronic Structure
As the the 20th century approached, scientists moved beyond the idea of the atom as indivisible by identifying its interior components: the electron (Thompson, 1897), the proton (Rutherford, 1920), and the neutron (Chadwick, 1932). The Bohr model (1913) of the atom added detail to the picture, describing how electrons jump between energy levels and emit distinct quanta of energy as they do. This led to the birth of modern subatomic theory. Today, by understanding the interactions of atoms with light, quantum theory can be applied in astrophysics or in forensic chemistry, where hand-held X-ray spectrometers read wavelengths of light to detect the presence of different materials.

VOD4. Organizing Atoms and Electrons: The Periodic Table
Before scientists knew about the subcomponents of atoms, they organized elements based on physical and chemical properties. Dmitri Mendeleev developed an early Periodic Table of the 63 known elements, leaving gaps for the discovery of new elements to come. His table was enhanced by Henry Moseley who enabled today's ordering of the elements, based on the number of protons. Scientists at Lawrence Livermore Labs have synthesized new elements up to atomic number 118. These new elements further our understanding of the mysteries of the atom and also have useful applications in forensic science.

VOD5. Making Molecules: Lewis Structures and Molecular Geometries
When molecules form, the elements bond to one other by sharing or exchanging electrons. The “Octet Rule” predicts how atoms will combine to fill the eight slots in their outer shells. The program shows how this simple, but powerful, bonding mechanism — when combined with electron pair repulsion — leads to the 3-dimensional structure of molecules. Using these principles, scientists can build molecules that disrupt the chemical processes of cancer cell replication. Lewis structures, atomic model configurations, VSEPR theory and radicals are discussed.

VOD6. Quantifying Chemical Reactions: Stoichiometry and Moles
To manipulate chemical reactions on a large scale, scientists use stoichiometry to quantify those reactions and make sure that there are just the right amount of reactants and products. Without it, reactions can be incomplete, with expensive materials wasted and harmful byproducts created. Using stoichiometry, scientists are creating chemicals that take the place of petroleum in fabricating sustainable materials. At different lab, scientists are mimicking the process of photosynthesis to convert the Sun’s energy into storable chemical energy.

VOD7. The Energy in Chemical Reactions: Thermodynamics and Enthalpy
By first looking at work and heat, the course adds another dimension: the energetics of chemical reactions. This study of thermodynamics can lead to predicting how chemical reactions will proceed or how much energy is required or released during the reactions. To better understand chemical reactions, a new thermodynamic value called “enthalpy” is introduced. Practical applications of bond enthalpies, calorimetry, and other measurements of the energy in chemical reactions is helping scientists optimize the use of crop waste for biofuels and build more efficient automobile engines.

VOD8. When Chemicals Meet Water: The Properties of Solutions
Solutions are uniform mixtures of molecules in which any of the phases of matter can be dissolved in another phase. Whether solids, liquids, or gases, solution chemistry is important because most chemical reactions, whether in the laboratory or in nature, take place in solutions. In particular, solutions with water as the solvent – aqueous solutions – are the core of all biology. Extending the particle model of matter to solutions enables chemists to predict what will happen to a deep-sea diver who breathes different mixtures of gases, or to the life forms in the ocean as CO2 levels rise in the atmosphere.

VOD9. Equilibrium and Advanced Thermodynamics: Balance in Chemical Reactions
Some chemical reactions, like metal rusting, happen spontaneously. Others require external energy in order to occur. Expanding upon the basic thermodynamics of enthalpy from Unit 7, disorder (entropy) and Gibbs free energy are key to understanding what makes chemical reactions proceed thermodynamically. When the thermodynamics of a reaction prevent it from reaching completion, (both products and reactants are always present) it is called equilibrium. When equilibrium reactions are disrupted, such as the binding of oxygen by hemoglobin, as in carbon monoxide poisoning, it can be life threatening. Conversely, controlling an equilibrium reaction is important in chemical manufacturing, like in the synthesis of ammonia.

VOD10. Acids and Bases: The Voyage of the Proton
Acids and bases are important to many chemical processes: maintaining a stable internal environment in the human body, baking a delicious cake, or determining whether a lake can support aquatic life. Reactions involving acids and bases can be described through the transfer of protons – single H+ ions. For chemists, the number of those acidic hydrogen ions can be quantified by using the pH scale. The reactions of acids and bases, which can be monitored with indicators, can range from corrosive behavior to neutralizations that leave no acids or bases behind. To understand the controlling of pH of solutions, buffers are discussed in the laboratory and in the chemistry of the bloodstream.

VOD11. The Metallic World: Electrochemistry and Coordination Compounds
Electrochemistry is the study of chemical reactions in which the reactants transfer electrons from one compound to another. In any electrochemical process, one species will lose electrons and get oxidized, while the other must concurrently gain electrons and get reduced. So, these processes are called “redox” reactions. If the flow of electrons during a redox reaction can be controlled, energy can be stored inside batteries for later use or the surfaces of metals can be electroplated. Nearly all of these processes involve metals transferring their electrons, and in human biology, metals do most of the redox chemistry. The role of the redox chemistry of cobalt is in preventing birth defects and controlling heart disease.

VOD12. Kinetics and Nuclear Chemistry: The Need for Speed
The speeds of chemical reactions vary tremendously. TNT (Trinitrotoluene) detonates in a fraction of a second, whereas the iron in a car muffler takes years to rust through. A trip to an amusement park offers many analogies to help understand the factors that control reaction rates. For example, the rate of synthesis of cancer medicines can be increased by carefully-chosen catalysts. The connection between reaction rates and nuclear chemistry is underscored by examining how radioactive decay is used in PET scans.

VOD13. Modern Materials and the Solid State: Crystals, Polymers, and Alloys
In this unit, the focus shifts from fluids and their solutions to solids, whose atoms and molecules are fixed in definite arrangements. Examples of molecular configurations range from crystals in a mineral collection, to metal alloys, to long polymer chains. One promising area of polymer research may allow the delivery of essential drugs such as insulin to be taken orally and delivered directly into the bloodstream. Bioplastic-enclosed nanoparticles encasing the drug have the ability to withstand the body’s corrosive digestive system. Extremely high-temperature resistant alloys are another important application of the chemistry of the solid state.

 

Privacy Policy    Contact Us    Site Map

 
© Annenberg Foundation 2013. All rights reserved. Legal Policy