Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Search
Follow The Annenberg Learner on LinkedIn Follow The Annenberg Learner on Facebook Follow Annenberg Learner on Twitter
Rediscovering Biology Logo
Home
Online TextbookCase StudiesExpertsArchiveGlossarySearch
Online Textbook
Back to Unit Page
Unit Chapters
Genomics
Proteins & Proteomics
What is Proteomics?
Introduction to Protein Structure
Determining Protein Structure
Structure and Function Relationships of Proteins
Protein Modification
Genomics-Based Predictions of Cellular Proteins
2D Gel Electrophoresis to Identify Cellular Proteins
Mass Spectrometry to Identify Cellular Proteins
Identifying Protein Interactions
The Yeast Two-Hybrid System
Protein Microarrays
Protein Networks
Proteomes in Different Organisms
Proteomics and Drug Discovery
Ethics and the Economics of Drug Discovery
Evolution & Phylogenetics
Microbial Diversity
Emerging Infectious Diseases
HIV & AIDS
Genetics of Development
Cell Biology & Cancer
Human Evolution
Neurobiology
Biology of Sex & Gender
Biodiversity
Genetically Modified Organisms
Proteomics and Drug Discovery

One of the most promising developments to come from the study of human genes and proteins has been the identification of potential new drugs for the treatment of disease. This relies on genome and proteome information to identify proteins associated with a disease, which computer software can then use as targets for new drugs. For example, if a certain protein is implicated in a disease, the 3D structure of that protein provides the information a computer programs needs to design drugs to interfere with the action of the protein. A molecule that fits the active site of an enzyme, but cannot be released by the enzyme, will inactivate the enzyme. This is the basis of new drug-discovery tools, which aim to find new drugs to inactivate proteins involved in disease. As genetic differences among individuals are found, researchers will use these same techniques to develop personalized drugs that are more effective for the individual.

Virtual ligand screening is a computer technique that attempts to fit millions of small molecules to the three-dimensional structure of a protein.
Figure 6. Drug binding to active site of protein
The computer rates the quality of the fit to various sites in the protein, with the goal of either enhancing or disabling the function of the protein, depending on its function in the cell. A good example of this is the identification of new drugs to target and inactivate the HIV-1 protease. The HIV-1 protease is an enzyme that cleaves a very large HIV protein into smaller, functional proteins. The virus cannot survive without this enzyme; therefore, it is one of the most effective protein targets for killing HIV
(Fig. 6).

Because many proteins have multiple functions, it may be necessary to develop drugs for each function of a multitask protein. In addition, most proteins act as part of complexes and networks, which may also affect the way a protein acts in a cell. This may also affect the ability of drugs to disable the protein. Understanding the proteome, the structure and function of each protein, and the complexities of protein-protein interactions will be critical for developing the most effective diagnostic techniques and disease treatments in the future.

Back Next


© Annenberg Foundation 2014. All rights reserved. Legal Policy